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Abstract—An information-theoretic framework for unequal
error protection is developed in terms of the exponential error
bounds. The fundamental difference between the bit-wise and
message-wise unequal error protection ( UEP) is demonstrated,
for fixed-length block codes on discrete memoryless channels
(DMCs) without feedback. Effect of feedback is investigated via
variable-length block codes. It is shown that, feedback results in a
significant improvement in both bit-wise and message-wise UEPs
(except the single message case for missed detection). The distinc-
tion between false-alarm and missed-detection formalizations for
message-wise UEP is also considered. All results presented are at
rates close to capacity.

Index Terms—Block codes, blowing-up lemma, error exponents,
false alarm, feedback, missed detection, unequal error protection
(UEP), variable-length block coding.

I. INTRODUCTION

C LASSICAL theoretical framework for communication
[35] assumes that all information is equally important.

In this framework, the communication system aims to provide
a uniform error protection to all messages: any particular
message being mistaken as any other is viewed to be equally
costly. With such uniformity assumptions, reliability of a
communication scheme is measured by either the average or
the worst case probability of error, over all possible messages
to be transmitted. In information theory literature, a communi-
cation scheme is said to be reliable if this error probability can
be made small. Communication schemes designed with this
framework turn out to be optimal in sending any source over
any channel, provided that long enough codes can be employed.
This homogeneous view of information motivates the universal
interface of “bits” between any source and any channel [35],
and is often viewed as Shannon’s most significant contribution.

In many communication scenarios, such as wireless net-
works, interactive systems, and control applications, where
uniformly good error protection becomes a luxury; providing
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such a protection to the entire information might be wasteful,
if not infeasible. Instead, it is more efficient here to protect a
crucial part of information better than the rest; see, for example,
the following.

• In a wireless network, control signals like channel state,
power control, and scheduling information are often more
important than the payload data, and should be protected
more carefully. Thus, even though the final objective is de-
livering the payload data, the physical layer should provide
a better protection to such protocol information. Similarly
for the Internet, packet headers are more important for de-
livering the packet and need better protection to ensure that
the actual data gets through.

• Another example is transmission of a multiple resolution
source code. The coarse resolution needs a better protec-
tion than the fine resolution so that the user at least obtains
some crude reconstruction after bad noise realizations.

• Controlling unstable plants over noisy communication link
[33] and compressing unstable sources [34] provide more
examples where different parts of information need dif-
ferent reliability.

In contrast with the classical homogeneous view, these exam-
ples demonstrate the heterogeneous nature of information. Fur-
thermore, the practical need for unequal error protection (UEP)
due to this heterogeneity demonstrated in these examples is the
reason why we need to go beyond the conventional content-
blind information processing.

Consider a message set for a block
code. Note that members of this set, i.e., “messages,” can also
be represented by length strings of information bits,

. A block code is composed of an encoder which
maps the messages into channel inputs and a decoder
which maps channel outputs to decoded message . An
error event for a block code is . In most informa-
tion theory texts, when an error occurs, the entire bit sequence

is rejected. That is, errors in decoding the message and in de-
coding the information bits are treated similarly. We avoid this,
and try to figure out what can be achieved by analyzing the er-
rors of different subsets of bits separately.

In the existing formulations of unequal error protection codes
[38] in coding theory, the information bits are partitioned into
subsets, and the decoding errors in different subsets of bits are
viewed as different kinds of errors. For example, one might want
to provide a better protection to one subset of bits by ensuring
that errors in these bits are less probable than the other bits. We
call such problems as “bit-wise UEP.” Previous examples of
packet headers, multiple resolution codes, etc. , belong to this
category of UEP.
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However, in some situations, instead of bits one might want
to provide a better protection to a subset of messages. For ex-
ample, one might consider embedding a special message in a
normal -bit code, i.e., transmitting one of messages,
where the extra message has a special meaning and requires a
smaller error probability. Note that the error event for the special
message is not associated to the error in any particular bit or set
of bits. Instead, it corresponds to a particular bit-sequence (i.e.,
message) being decoded as some other bit sequence. Borrowing
from hypothesis testing, we can define two kinds of errors cor-
responding to a special message.

• Missed detection of a message occurs when transmitted
message is and decoded message is some other
message . Consider a special message indicating
some system emergency which is too costly to be missed.
Clearly, such special messages demand a small missed de-
tection probability. Missed detection probability of a mes-
sage is simply the conditional error probability after its
transmission.

• False alarm of a message occurs when transmitted mes-
sage is some other message and decoded mes-
sage is . Consider the reboot message for a remote-con-
trolled system such as a robot or a satellite or the “discon-
nect” message to a cell phone. Its false alarm could cause
unnecessary shutdowns and other system troubles. Such
special messages demand small false-alarm probability.

We call such problems as “message-wise UEP.” In conven-
tional framework, every bit is as important as every other bit and
every message is as important as every other message. In short,
in a conventional framework it is assumed that all the informa-
tion is “created equal.” In such a framework there is no reason
to distinguish between bit-wise or message-wise error proba-
bilities because message-wise error probability is larger than
bit-wise error probability by an insignificant factor, in terms of
exponents. However, in the UEP setting, it is necessary to differ-
entiate between message errors and bit errors. We will see that in
many situations, error probability of special bits and messages
have behaved very differently.

The main contribution of this paper is a set of results, identi-
fying the performance limits and optimal coding strategies, for a
variety of UEP scenarios. We focus on a few simplified notions
of UEP, most with immediate practical applications, and try to
illustrate the main insights for them. One can imagine using
these UEP strategies for embedding protocol information within
the actual data. By eliminating a separate control channel, this
can enhance the overall bandwidth and/or energy efficiency.

For conceptual clarity, this paper focuses exclusively on situ-
ations where the data rate is essentially equal to the channel ca-
pacity. These situation can be motivated by the scenarios where
data rate is a crucial system resource that cannot be compro-
mised. In these situations, no positive error exponent in the con-
ventional sense can be achieved. That is, if we aim to protect
the entire information uniformly well, neither bit-wise nor mes-
sage-wise error probabilities can decay exponentially fast with
increasing code length. We ask the question then “can we make
the error probability of a particular bit, or a particular message,
decay exponentially fast with block length?”

When we break away from the conventional framework and
start to provide better protection against certain kinds of errors,
there is no reason to restrict ourselves by assuming that those
errors are erroneous decoding of some particular bits or missed
detections or false alarms associated with some particular mes-
sages. A general formulation of UEP could be an arbitrary com-
bination of protection demands against some specific kinds of
errors. In this general definition of UEP, bit-wise UEP and mes-
sage-wise UEP are simply two particular ways of specifying
which kinds of errors are too costly compared to others.

In the following, we start by specifying the channel model
and giving some basic definitions in Section II. Then, in Sec-
tion III, we discuss bit-wise UEP and message-wise UEP for
block codes without feedback. Theorem 1 shows that for data
rates approaching capacity, even a single bit cannot achieve any
positive error exponent. Thus, in bit-wise UEP, the data rate
must back off from capacity for achieving any positive error ex-
ponent even for a single bit. On the contrary, in message-wise
UEP, positive error exponents can be achieved even at capacity.
We first consider the case when there is only one special mes-
sage and show, in Theorem 2, that the optimal (missed-detec-
tion) error exponent for the special message is equal to the red-
alert exponent, which is defined in Section III-B. We then con-
sider situations where an exponentially large number of mes-
sages are special and each special message demands a posi-
tive (missed detection) error exponent. (This situation has pre-
viously been analyzed in [12], and a result closely related to
our has been reported there.) Theorem 3 shows a surprising re-
sult that these special messages can achieve the same exponent
as if all the other (nonspecial) messages are absent. In other
words, a capacity-achieving code and an error exponent-optimal
code below capacity can coexist without hurting each other.
These results also shed some new light on the structure of ca-
pacity-achieving codes.

Insights from the block codes without feedback become
useful in Section IV, where we investigate similar problems for
variable-length block codes with feedback. Feedback together
with variable decoding time creates some fundamental connec-
tions between bit-wise UEP and message-wise UEP. Now even
for bit-wise UEP, a positive error exponent can be achieved
at capacity. Theorem 5 shows that a single special bit can
achieve the same exponent as a single special message—the
red-alert exponent. As the number of special bits increases, the
achievable exponent for them decays linearly with their rate as
shown in Theorem 6. Then, Theorem 7 generalizes this result
to the case when there are multiple levels of specialty—most
special, second-most special, and so on. It uses a strategy sim-
ilar to onion-peeling and achieves error exponents which are
successively refinable over multiple layers. For single special
message case, however, Theorem 8 shows that feedback does
not improve the optimal missed detection exponent. The case
of exponentially many messages is resolved in Theorem 9.
Evidently, many special messages cannot achieve an exponent
higher than that of a single special message, i.e., red-alert
exponent. However, it turns out that the special messages can
reach red-alert exponent at rates below a certain threshold, as
if all the other special messages were absent. Furthermore, for
the rates above the very same threshold, special messages reach
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the corresponding value of Burnashev’s exponent, as if all the
ordinary messages were absent.

Section V then addresses message-wise UEP situations,
where special messages demand small probability of false
alarms instead of missed detections. It considers the case of
fixed-length block codes without feedback as well as vari-
able-length block codes with feedback. This discussion for
false alarms was postponed from earlier sections to avoid
confusion with the missed-detection results in earlier sections.
Some future directions are discussed briefly in Section VI.

After discussing each theorem, we will provide a brief de-
scription of the optimal strategy, but refrain from detailed tech-
nical discussions. Proofs can be found in later sections. In Sec-
tions VII and VIII we will present the proofs of the results in
Section III, on block codes without feedback, and Section IV,
on variable-length block codes with feedback, respectively. Fi-
nally, in Section IX we discuss the proofs for the false-alarm
results of Section V. Before going into the presentation of our
work let us give a very brief overview of earlier work on the
problem, in different fields.

A. Earlier Work and Contribution

The simplest method of unequal error protection is to allo-
cate different channels for different types of data. For example,
many wireless systems allocate a separate “control channel,”
often with short codes with low rate and low spectral efficiency,
to transmit control signals with high reliability. The well-known
Gray code, assigning similar bit strings to close by constellation
points, can be viewed as UEP: even if there is some error in iden-
tifying the transmitted symbol, there is a good chance that some
of the bits are correctly received. But clearly this approach is far
from addressing the problem in any effective way.

The first systematic consideration of problems in coding
theory was within the frame work of linear codes. In [24],
Masnick and Wolf suggested techniques which protect different
parts (bits) of the message against different number of channel
errors (channel symbol conversions). This frame work has been
extensively studied over the years in [7], [8], [16], [21], [22],
[26], [27], and in many others. Later issue is addressed within
the framework of low-density parity-check (LDPC) codes as
well [29]–[32], [39], and [28].

“Priority encoded transmission” (PET) was suggested by Al-
benese et al. [2] as an alternative model of the problem, with
packet erasures. In this approach, guarantees are given not in
terms of channel errors but packet erasures. Coding and modu-
lation issues are addressed simultaneously in [10]. For wireless
channels, [15] analyzes this problem in terms of diversity–mul-
tiplexing tradeoffs.

In contrast with the above mentioned work, we pose and ad-
dress the problem within the information-theoretic frame work.
We work with the error probabilities and refrain from making
assumptions about the particular block code used while proving
our converse results. This is the main difference between our
approach and the prevailing approach within the coding theory
community.

In [3], Bassalygo et al. considered the error-correcting codes
whose messages are composed of two group of bits, each of

which required a different level of protection against channel
errors and provided inner and outer bounds to the achievable
performance, in terms of Hamming distances and rates. Unlike
other works within coding theory frame work, they do not make
any assumption about the code. Thus, their results can indeed
be reinterpreted in our framework as a result for bit-wise UEP,
on binary-symmetric channels.

Some of the the UEP problems have already been investigated
within the framework of information theory as well. Csiszár
studied message-wise UEP with many messages in [12]. More-
over, results in [12] are not restricted to the rates close to ca-
pacity, like ours. Also messages-wise UEP with a single special
message was dealt with in [23] by Kudryashov. In [23], a UEP
code with single special message is used as a subcode within a
variable-delay communication scheme. The scheme proposed in
[23] for the single special message case is a key building block
in many of the results in Section IV. However, the optimality of
the scheme was not proved in [23]. We show that it is indeed
optimal.

The main contribution of the current work is the proposed
framework for UEP problems within information theory. In ad-
dition to the particular results presented on different problems
and the contrasts demonstrated between different scenarios, we
believe the proof techniques used in 1 Sections VII-A, VIII-B.2,
and VIII-D.2 are novel and promising for future work in the
field.

II. CHANNEL MODEL AND NOTATION

A. DMCs and Block Codes

We consider a discrete memoryless channel (DMC) ,
with input alphabet and output alphabet

. The conditional distribution of output
letter when the channel input letter equals is de-
noted by

We assume that all the entries of the channel transition matrix
are positive, that is, every output letter is reachable from every
input letter. This assumption is indeed a crucial one. Many of
the results we present in this paper change when there are zero-
probability transitions.

A length block code without feedback with message set
is composed of two mappings, encoder

mapping and decoder mapping. Encoder mapping assigns a
length codeword2

where denotes the input at time for message . Decoder
mapping, , assigns a message to each possible channel output
sequence, i.e., .

1The key idea in Section VIII-B.2 is a generalization of the approach pre-
sented in [4].

2Unless mentioned otherwise, lower case letters (e.g., �) denote a particular
value of the corresponding random variable denoted in capital letters (e.g., �).
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At time zero, the transmitter is given the message , which
is chosen from according to a uniform distribution. In the
following time units, it sends the corresponding codeword.
After observing , the receiver decodes a message. The error
probability and rate of the code is given by

and

B. Different Kinds of Errors

While discussing message-wise UEP, we consider the condi-
tional error probability for a particular message

Recall that this is the same as the missed detection probability
for message .

On the other hand, when we are talking about bit-wise UEP,
we consider message sets that are of the form .
In such cases, message is composed of two submessages:

. The first submessage corresponds to the
high-priority bits while the second submessage corresponds
to the low-priority bits. The uniform choice of from im-
plies the uniform and independent choice of and from

and , respectively. Error probability of a submessage
is given by

Note that the overall message is decoded incorrectly when
either or or both are decoded incorrectly. The goal of
bit-wise UEP is to achieve best possible while

ensuring a reasonably small .

C. Reliable Code Sequences

We focus on systems where reliable communication is
achieved in order to find exponentially tight bounds for error
probabilities of special parts of information. We use the notion
of code sequences to simplify our discussion.

A sequence of codes indexed by their block lengths is called
reliable if

For any reliable code sequence , the rate is given by

The (conventional) error exponent of a reliable sequence is then

Thus, the number of messages in is3 and their av-
erage error probability decays like with block length.
Now we can define error exponent in the conventional

3The
�
� sign denotes equality in the exponential sense. For a sequence �

�
�
� � � � � ��� ���

�� �

�

sense, which is equivalent to the ones given in [13], [17], [20],
[25], [36].

Definition 1: For any the error exponent is
defined as

As mentioned previously, we are interested in UEP when op-
erating at capacity. We already know, [36], that , i.e.,
the overall error probability cannot decay exponentially at ca-
pacity. In the following sections, we show how certain parts of
information can still achieve a positive exponent at capacity. In
doing that, we are focusing only on the reliable sequences whose
rates are equal to . We call such reliable code sequences ca-
pacity-achieving sequences.

Throughout the text we denote Kullback–Leibler (KL)
divergence between two distributions and as

.

Similarly, conditional KL divergence between and
under is given by

The output distribution that achieves the capacity is denoted by
and a corresponding input distribution is denoted by .

III. UEP AT CAPACITY: BLOCK CODES WITHOUT FEEDBACK

A. Special Bit

We first address the situation where one particular bit (say
the first) out of the total bits is a special bit—it needs
a much better error protection than the overall information. The
error probability of the special bit is required to decay as fast
as possible while ensuring reliable communication at capacity,
for the overall code. The single special bit is denoted by
where and over all message is of the form

where . The optimal error
exponent for the special bit is then defined as follows.4.

Definition 2: For a capacity-achieving sequence with mes-
sage sets where , the special
bit error exponent is defined as

Then is defined as .

Thus, if for a reliable
sequence , then is the supremum of over all capacity-
achieving ’s.

4Appendix A discusses a different but equivalent type of definition and shows
why it is equivalent to this one. These two types of definitions are equivalent for
all the UEP exponents discussed in this paper.
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Fig. 1. Splitting the output space into two distant enough clusters.

Since , it is clear that the entire information cannot
achieve any positive error exponent at capacity. However, it is
not clear whether a single special bit can steal a positive error
exponent at capacity.

Theorem 1:

This implies that, if we want the error probability of the mes-
sages to vanish with increasing block length and the error prob-
ability of at least one of the bits to decay with a positive expo-
nent with block length, the rate of the code sequence should be
strictly smaller than the capacity.

Proof of the theorem is heavy in calculations, but the main
idea behind is the “blowing up lemma” [13]. Conventionally,
this lemma is only used for strong converses for various ca-
pacity theorems. It is also worth mentioning that the conven-
tional converse techniques like Fano’s inequality are not suffi-
cient to prove this result.

Intuitive Interpretation: Let the shaded balls in Fig. 1 de-
note the minimal decoding regions of the messages. These de-
coding regions ensure reliable communication, they are essen-
tially the typical noise balls ([11]) around codewords. The de-
coding regions on the left of the thick line correspond to
and those on the right correspond to the same when .
Each of these halves includes half of the decoding regions. In-
tuitively, the blowing up lemma implies that if we try to add
slight extra thickness to the left clusters in Fig. 1, it blows up to
occupy almost all the output space. This strange phenomenon
in high-dimensional spaces leaves no room for the right cluster
to fit. Infeasibility of adding even slight extra thickness implies
zero error exponent the special bit.

B. Special Message

Now consider situations where one particular message (say
) out of the total messages is a special mes-

sage—it needs a superior error protection. The missed detec-
tion probability for this “emergency” message needs to be min-
imized. The best missed detection exponent is defined as
follows.5

5Note that the definition obtained by replacing �� � �� �� ��� � �� by
�	
 �� � �� �� ��� � �� is equivalent to the one given above, since we are
taking the supremum over � anyway. In short, the message � with smallest
conditional error probability could always be relabeled as message �.

Definition 3: For a capacity-achieving sequence , missed
detection exponent is defined as

Then is defined as .

Compare this with the situation where we aim to protect
all the messages uniformly well. If all the messages demand
equally good missed detection exponent, then no positive ex-
ponent is achievable at capacity. This follows from the earlier
discussion about . The following theorem shows the
improvement in this exponent if we only demand it for a single
message instead of all.

Definition 4: The parameter is defined6 as the red-alert
exponent of a channel

We will denote the input letter achieving above maximum by .

Theorem 2:

Recall that Karush–Kuhn–Tucker (KKT) conditions for
achieving capacity imply the following expression for ca-
pacity[20, Theorem 4.5.1]:

Note that simply switching the arguments of KL divergence
within the maximization for gives us the expression for .
The capacity represents the best possible data rate over a
channel, whereas red-alert exponent represents the best pos-
sible protection achievable for a message at capacity.

It is worth mentioning here the “very noisy” channel in [20].
In this formulation [6], the KL divergence is symmetric, which
implies

Hence, the red-alert exponent and capacity become roughly
equal. For a symmetric channel such as a binary-sym-
metric channel (BSC), all inputs can be used as .
Since is the uniform distribution for these channels,

for any input letter . This also
happens to be the sphere-packing exponent of this
channel [36] at rate .

Optimal Strategy: Codewords of a capacity-achieving code
are used for the ordinary messages. Codeword for the special
message is a repetition sequence of the input letter . For all
the output sequences special message is decoded, except for
the output sequences with empirical distribution (type) approx-
imately equal to . For the output sequences with empirical
distribution approximately , the decoding scheme of the orig-
inal capacity-achieving code is used.

6The authors would like to thank Krishnan Eswaran of University of Cali-
fornia, Berkeley for suggesting this name.
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Fig. 2. Avoiding missed-detection.

Indeed, Kudryashov [23] had already suggested the encoding
scheme described above, as a subcode for his non-block-vari-
able delay coding scheme. However, discussion in [23] does not
make any claims about the optimality of this encoding scheme.

Intuitive Interpretation: Having a large missed detection
exponent for the special message corresponds to having a large
decoding region for the special message. This ensures that when

, i.e., when the special message is transmitted, prob-
ability of is exponentially small. In a sense in-
dicates how large the decoding region of the special message
could be made, while still filling typical noise balls in
the remaining space. The hexagon in Fig. 2 denotes such a large
region. Note that the actual decoding region of the special mes-
sage is much larger than this illustration, because it consists of
all output types except the ones close to , whereas the ordi-
nary decoding regions only contain the output types close to .

Utility of this result is two-fold: first, the optimality of such a
simple scheme was not obvious before; second, as we will see
later, protecting a single special message is a key building block
for many other problems when feedback is available.

C. Many Special Messages

Now consider the case when instead of a single special mes-
sage, exponentially many of the total messages are spe-
cial. Let denote this set of special messages

The best missed detection exponent, achievable simultaneously
for all of the special messages, is denoted by .

Definition 5: For a capacity-achieving sequence , the
missed detection exponent achieved on sequence of subsets

is defined as

Then, for a given , is defined as

where maximization is over ’s such that

This message-wise UEP problem has already been investi-
gated by Csiszár in his paper on joint source–channel coding
[12]. His analysis allows for multiple sets of special messages
each with its own rate and an overall rate that can be smaller
than the capacity.7

Essentially, is the best value for which missed detec-
tion probability of every special message is
or smaller. Note that if the only messages in the code are these

special messages (instead of total mes-
sages), their best missed detection exponent equals the classical
error exponent discussed earlier.

Theorem 3:

Thus, we can communicate reliably at capacity and still pro-
tect the special messages as if we were only communicating the
special messages. Note that the classical error exponent is
yet unknown for the rates below the critical rate (except for zero
rate). Nonetheless, this theorem says that whatever can be
achieved for messages when they are by themselves in
the codebook, can still be achieved when there are addi-
tional ordinary messages requiring reliable communication.

Optimal Strategy: Start with an optimal codebook for
messages which achieves the error exponent . These

codewords are used for the special messages. Now the ordinary
codewords are added using random coding. The ordinary code-
words which land close to a special codeword may be discarded
without essentially any effect on the rate of communication.

The decoder uses a two-stage decoding rule, in the first stage
of which it decides whether or not a special message was sent. If
the received sequence is close to one or more of the special code-
words, the receiver decides that a special message was sent else
it decides an ordinary message was sent. In the second stage,
receiver employs maximum-likelihood (ML) decoding either
among the ordinary messages or among the special messages
depending on its decision in the first stage.

The overall missed detection exponent is bottle-
necked by the second-stage errors. It is because the first-stage
error exponent is essentially the sphere-packing exponent

, which is never smaller than the second-stage error
exponent .

Intuitive Interpretation: This means that we can start with
a code of messages, where the decoding regions are
large enough to provide a missed detection exponent of .
Consider the balls around each codeword with sphere-packing
radius (see Fig. 3(a)). For each message, the probability of going
outside its ball decays exponentially with the sphere-packing
exponent. Although, these balls fill up most of the output
space, there are still some cavities left between them. These

7The authors would like to thank Pulkit Grover of University of California,
Berkeley for pointing out this closely related work [12]
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Fig. 3. “There is always room for capacity.” (a) Exponent optimal code. (b)
Achieving capacity.

small cavities can still accommodate typical noise balls
for the ordinary messages (see Fig. 3(b)), which are much
smaller than the original balls. This is analogous to filling
sand particles in a box full of large boulders. This theorem is
like saying that the number of sand particles remains unaffected
(in terms of the exponent) in spite of the large boulders.

D. Allowing Erasures

In some situations, a decoder may be allowed to declare an
erasure when it is not sure about the transmitted message. These
erasure events are not counted as errors and are usually fol-
lowed by a retransmission using a decision feedback protocol
like Hybrid-ARQ (hybrid automatic repeat request). This sub-
section extends the earlier result for to the cases when
such erasures are allowed.

In decoding with erasures, in addition to the message set ,
the decoder can map the received sequence to a virtual mes-
sage called “erasure.” Let erasure denote the average erasure
probability of a code

erasure erasure

Previously, when there was no erasures, errors were not de-
tected. For errors and erasures decoding, erasures are detected
errors, the rest of the errors are undetected errors and denotes
the undetected error probability. Thus, average and conditional
(undetected) error probabilities are given by

erasure

erasure

An infinite sequence of block codes with errors and erasures
decoding is reliable, if its average error probability and average
erasure probability, both vanish with .

and erasure

If the erasure probability is small, then average number of re-
transmissions needed is also small. Hence, this condition of van-
ishingly small erasure ensures that the effective data rate of
a decision feedback protocol remains unchanged in spite of re-
transmissions. We again restrict ourselves to reliable sequences
whose rate equal .

We could redefine all previous exponents for decision
feedback (df) scenarios, i.e., for reliable codes with erasure
decoding. But resulting exponents do not change with the
provision of erasures with vanishing probability for single bit
or single message problems, i.e., decision feedback protocols
such as Hybrid-ARQ does not improve or . Thus, we
only discuss the decision feedback version of .

Definition 6: For a capacity-achieving sequence with era-
sures, , the missed detection exponent achieved on sequence
of subsets is defined as

erasure

Then for a given , is defined as

where maximization is over ’s such that

The next theorem shows that allowing erasures increases the
missed-detection exponent for below a critical rate, on sym-
metric channels.

Theorem 4: For symmetric channels

Coding strategy is similar to the no-erasure case. We first start
with an erasure code for messages like the one in [18].
Then add randomly generated ordinary codewords to it. Again,
a two-stage decoding is performed where the first stage decides
between the set of ordinary codewords and the set of special
codewords using a threshold distance. If this first stage chooses
special codewords, the second stage applies the decoding rule
in [18] amongs special codewords. Otherwise, the second stage
uses the ML decoding among ordinary codewords.

The overall missed detection exponent is bottle-
necked by the first-stage errors. That is because the first-stage
error exponent is smaller than the second-stage error
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exponent . This is in contrast to the case without
erasures.

IV. UEP AT CAPACITY: VARIABLE LENGTH BLOCK CODES

WITH FEEDBACK

In the preceding section, we analyzed bit-wise and mes-
sage-wise UEP problems for fixed-length block codes (without
feedback) operating at capacity. In this section, we will revisit
the same problems for variable-length block codes with perfect
feedback, operating at capacity. Before going into the discus-
sion of the problems, let us recall variable-length block codes
with feedback briefly.

A variable-length block code with feedback is composed of a
coding algorithm and a decoding rule. Decoding rule determines
the decoding time and the message that is decoded then. Possible
observations of the receiver can be seen as leaves of -ary
tree, as in [4]. In this tree, all nodes at length from the root
denote all possible outputs at time . All non-leaf nodes
among these split into further branches in the next time

and the branching of the non-leaf nodes continue like this
ever after. Each node of depth in this tree corresponds to a
particular sequence, , i.e., a history of outputs until time .
The parent of node is its prefix . Leaves of this tree form
a prefix-free source code, because decision to stop for decoding
has to be a casual event. In other words, the event
should be measurable in the -field generated by . In addition
we have thus decoding time is a Markov
stopping time with respect to receivers observation. The coding
algorithm, on the other hand, assigns an input letter
to each message at each non-leaf node of this tree. The
encoder stops transmission of a message when a leaf is reached,
i.e., when the decoding is complete.

The codes we consider are block codes in the sense that trans-
mission of each message (packet) starts only after the transmis-
sion of the previous one ends. The error probability and rate of
the code are simply given by

and

A more thorough discussion of variable-length block codes with
feedback can be found in [9] and [4].

Earlier discussion in Section II-B about different kinds of er-
rors is still valid as is but we need to slightly modify our discus-
sion about the reliable sequences. A reliable sequence of vari-
able-length block codes with feedback is any countably infi-
nite collection of codes indexed by integers, such that

In the rate and exponent definitions for reliable sequences, we
replace block length by the expected decoding time .
Then, a capacity-achieving sequence with feedback is a reliable
sequence of variable -length block codes with feedback whose
rate is

It is worth noting the importance of our assumption that all
the entries of the transition probability matrix are posi-
tive. For any channel with a which has one or more zero

probability transitions, it is possible to have error-free codes op-
erating at capacity [9]. Thus, all the exponents discussed below
are infinite for DMCs with one or more zero probability transi-
tions.

A. Special Bit

Let us consider a capacity-achieving sequence whose mes-
sage sets are of the form where

. Then the error exponent of the , i.e., the initial bit, is
defined as follows.

Definition 7: For a capacity-achieving sequence with feed-
back , with message sets of the form

where , the special bit error exponent is de-
fined as

Then is defined as

Theorem 5:

Recall that without feedback, even a single bit could not
achieve any positive error exponent at capacity, Theorem 1.
But feedback together with variable decoding time connects
the message-wise UEP and the bit-wise UEP and results in
a positive exponent for bit-wise UEP. In the following, the
described strategy shows how schemes for protecting a special
message can be used to protect a special bit.

Optimal Strategy: We use a length fixed-length
block code with errors and erasures decoding as a building block
for our code. The transmitter first transmits using a short
repetition code of length . If the tentative decision about ,

, is correct after this repetition code, the transmitter sends
with a length capacity-achieving code. If is incor-

rect after the repetition code, the transmitter sends the symbol
for time units, where is the input letter maximizing

the . If the output sequence in the second

phase, , is not a typical sequence of , an erasure is de-
clared for the block. And the same message is retransmitted by
repeating the same strategy afresh. Otherwise, the receiver uses
an ML decoder to chose and .

The erasure probability is vanishingly small, as a result the
undetected error probability of in fixed-length erasure code
is approximately equal to the error probability of in the vari-
able-length block code. Furthermore, is roughly
despite the retransmissions. A decoding error for happens
only when and the empirical distribution of the
output sequence in the second phase is close to . Note that
latter event happens with probability .

B. Many Special Bits

We now analyze the situation where instead of a single spe-
cial bit there are approximately special bits out of
the total (approximately) bits. Hence, we consider
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the capacity-achieving sequences with feedback having mes-
sage sets of the form . Unlike in the
previous subsection, where the size of was fixed, we now
allow its size to vary with the index of the code. We restrict our-

selves to the cases where . This limit gives

us the rate of the special bits. It is worth noting at this point
that even when the rate of special bits is zero, the number of
special bits might not be bounded, i.e., might be

infinite. The error exponent at a given rate of special
bits is defined as follows.

Definition 8: For any capacity-achieving sequence with
feedback with the message sets of the form

, and are defined as

Then is defined as

The next theorem shows how this exponent decays linearly
with rate of the special bits.

Theorem 6:

Notice that the exponent , i.e., it is as high as the
exponent in the single bit case, in spite of the fact that here the
number of bits can be growing to infinity with . This linear
tradeoff between rate and reliability reminds us of Burnashev’s
result [9].

Optimal Strategy: Like the single bit case, we use a fixed-
length block code with erasures as our building block. First, the
transmitter sends using a capacity-achieving code of length

. If the tentative decision is correct, the transmitter sends
with a capacity-achieving code of length . Other-

wise, the transmitter sends channel input for time
units. If the output sequence in the second phase is not typical
with , an erasure is declared and the same strategy is repeated
afresh. Else, receiver uses an ML decoder to decide and de-
codes the message as . A decoding error for

happens only when an error happens in the first phase and
the output sequence in the second phase is typical with when
the reject codeword is sent. But the probability of the later event
is . The factor of arises because of the rel-
ative duration of the second phase to the overall communication
block. Similar to the single bit case, erasure probability remains
vanishingly small in this case. Thus, not only the expected de-
coding time of the variable-length block code is roughly equal
to the block length of the fixed-length block code, but also its
error probabilities are roughly equal to the corresponding error
probabilities associated with the fixed-length block code.

C. Multiple Layers of Priority

We can generalize this result to the case when there are mul-
tiple levels of priority, where the most important layer con-
tains bits, the second-most important layer con-
tains bits, and so on. For an -layer situation, mes-
sage set is of the form

. We assume, without loss of generality , that the order of
importance of the ’s is . Hence, we
have .

Then for any -layer capacity-achieving sequence with feed-
back, we define the error exponent of the th layer as

The achievable error exponent region of the -layered capacity-
achieving sequences with feedback is the set of all achievable
exponent vectors . The
following theorem determines that region.

Theorem 7: The achievable error exponent region of
the -layered capacity-achieving sequences with feed-
back, for rate vector is the set of vectors

satisfying

Note that the least important layer cannot achieve any positive
error exponent because we are communicating at capacity, i.e.,

.

Optimal Strategy: The transmitter first sends the most
important layer, , using a capacity-achieving code of length

. If it is decoded correctly, then it sends the next layer with
a capacity-achieving code of length . Else, it starts sending
the input letter for not only time units but also for all
remaining phases. The same strategy is repeated for

.
Once the whole block of channel outputs is observed; the

receivers check the empirical distribution of the output in all
of the phases except the first one. If they are all typical with

, the receiver uses the tentative decisions to decode,
. If one or more of the output sequences are

not typical with , an erasure is declared for the whole block
and transmission starts from scratch.

For each layer , with the above strategy we can achieve an ex-
ponent as if there were only two kinds of bits (as in Theorem 6)

• bits in layer or in more important layers (i.e., special
bits);

• bits in less important layers (i.e., ordinary bits).
Hence, Theorem 7 does not only specify the optimal perfor-
mance when there are multiple layers, but also shows that the
performance we observed in Theorem 6 is successively refin-
able. Fig. 4 shows these simultaneously achievable exponents
of Theorem 6, for a particular rate vector .

Note that the most important layer can achieve an exponent
close to if its rate is close to zero. As we move to the layers
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Fig. 4. Successive refinability for multiple layers of priority, demonstrated on
an example with six layers; � � � .

with decreasing importance, the achievable error exponent de-
cays gradually.

D. Special Message

Now consider one particular message, say the first one,
which requires small missed-detection probability. Similar
to the no-feedback case, define as its missed-detection
exponent at capacity.

Definition 9: For any capacity-achieving sequence with feed-
back , the missed detection exponent is defined as

Then is defined as .

Theorem 8:

Theorem 2 and 8 implies following corollary.

Corollary 1: Feedback does not improve the missed detection
exponent of a single special message: .

If the red-alert exponent were defined as the best protection of
a special message achievable at capacity, then this result could
have been thought of as an analog of “feedback does not in-
crease capacity” for the red-alert exponent. Also note that with
feedback, for the special message and for the special
bit are equal.

E. Many Special Messages

Now let us consider the problem where the first mes-
sages are special, i.e., . Unlike pre-
vious problems, now we will also impose a uniform expected
delay constraint as follows.

Definition 10: For any reliable variable length block code
with feedback

A reliable sequence with feedback is a uniform delay reliable
sequence with feedback if and only if .

This means that the average for every message
is essentially equal to (if not smaller). This uniformity con-
straint reflects a system requirement for ensuring a robust delay
performance, which is invariant of the transmitted message.8 Let
us define the missed-detection exponent under this uni-
form delay constraint.

Definition 11: For any uniform delay capacity-achieving
sequence with feedback, , the missed detection exponent
achieved on sequence of subsets is defined as

Then for a given , we define

where maximization is over ’s such that

The following theorem shows that the special messages can
achieve the minimum of the red-alert exponent and the Burna-
shev’s exponent at rate .

Theorem 9:

where .

For , each special message achieves
the best missed detection exponent for a single special mes-
sage, as if the rest of the special messages were absent. For

, special messages achieve the Burna-
shev’s exponent as if the ordinary messages were absent.

The optimal strategy is based on transmitting a special bit
first. This result demonstrates, yet another time, how feedback
connects bit-wise UEP with message-wise UEP. In the optimal
strategy for bit-wise UEP with many bits a special message was
used, whereas now in message-wise UEP with many messages a
special bit is used. The roles of bits and messages, in two optimal
strategies are simply swapped between the two cases.

Optimal Strategy: We combine the strategy for achieving
for a special bit and the Yamamoto–Itoh strategy for achieving
Burnashev’s exponent [40]. In the first phase, a special bit, , is
sent with a repetition code of symbols. This is the indicator
bit for special messages: it is when a special message is to be
sent and otherwise.

If is decoded incorrectly as , input letter is sent
for the remaining time unit. If it is decoded correctly as

, then the ordinary message is sent using a codeword from a
capacity-achieving code. If the output sequence in the second

8Optimal exponents in all previous problems remain unchanged irrespective
of this uniform delay constraint.
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phase is typical with receiver use an ML decoder to chose
one of the ordinary messages, else an erasure is declared for

long block.
If , then a length two-phase code with errors and

erasure decoding, like the one given in [40] by Yamamoto and
Itoh, is used to send the message. In the communication phase, a
length capacity-achieving code is used to send the message,

, if . If , an arbitrary codeword from
the length capacity-achieving code is sent. In the control
phase, if and if it is decoded correctly at the end of
communication phase, the accept letter is sent for
time units, else the reject letter, , is sent for time
units. If the empirical distribution in the control phase is typical
with then special message decoded at the end of
the communication phase becomes the final , else an erasure
is declared for long block.

Whenever an erasure is declared for the whole block, trans-
mitter and receiver applies the above strategy again from
scratch. This scheme is repeated until nonerasure decoding is
reached.

V. AVOIDING FALSE ALARMS

In the previous sections while investigating message-wise
UEP we have only considered the missed detection formulation
of the problems. In this section, we will focus on an alternative
formulation of message-wise UEP problems based on false
alarm probabilities.

A. Block Codes Without Feedback

We first consider the no-feedback case. When false alarm of a
special message is a critical event, e.g., the “reboot” instruction,
the false alarm probability for this message
should be minimized, rather than the missed detection proba-
bility .

Using Bayes’ rule and assuming uniformly chosen messages
we get

In classical error exponent analysis, [20], the error probability
for a given message usually means its missed detection proba-
bility. However, examples such as the “reboot” message neces-
sitate this notion of false alarm probability.

Definition 12: For a capacity-achieving sequence, , such
that

false alarm exponent is defined as

Then is defined as .

Thus, is the best exponential decay rate of false alarm
probability with . Unfortunately, we do not have the exact ex-
pression for . However, the upper bound given below is suf-
ficient to demonstrate the improvement introduced by feedback
and variable decoding time.

Theorem 10:

The upper and lower bounds to the false alarm exponent are
given by

where .
The maximizers of the optimizations for and are de-

noted by and

Strategy to Reach Lower Bound: The codeword for the
special message is a repetition sequence of input letter

. Its decoding region is the typical “noise ball” around it,
the output sequences whose empirical distribution is approxi-
mately equal to . For ordinary messages, we use
a capacity-achieving codebook, where all codewords have the
same empirical distribution (approximately) . Then for

whose empirical distribution is not in the typical “noise
ball” around the special codeword, the receiver performs ML
decoding among the ordinary codewords.

Note the contrast between this strategy for achieving
and the optimal strategy for achieving . For achieving

, the output sequences of any type other than the ones
close to were decoded as the special message; whereas for
achieving , only the output sequences of types that are close
to are decoded as the special message.

Intuitive Interpretation: A false-alarm exponent for the
special message corresponds to having the smallest possible
decoding region for the special message. This ensures that when
some ordinary message is transmitted, the probability of the
event is exponentially small. We cannot make it too
small though, because when the special message is transmitted,
the probability of the very same event should be almost one.
Hence, the decoding region of the special message should at
least contain the typical noise ball around the special codeword.
The small hexagon in Fig. 5 denotes such a region.

Note that is larger than channel capacity due to the
convexity of KL divergence
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Fig. 5. Avoiding false alarm.

where denotes the output distribution corresponding to the
capacity-achieving input distribution and the last equality
follows from KKT condition for achieving capacity we men-
tioned previously [20, Theorem 4.5.1].

Now we can compare our result for a special message with
a similar result for classical situation where all messages are
treated equally. It turns out that if every message in a capacity-
achieving code demands equally good false-alarm exponent,
then this uniform exponent cannot be larger than . This re-
sult seems to be directly connected with the problem of identi-
fication via channels [1]. We can prove the achievability part of
their capacity theorem using an extension of the achievability
part of . Perhaps a new converse of their result is also pos-
sible using such results. Furthermore, we see that reducing the
demand of false-alarm exponent to only one message, instead
of all, enhances it from to at least .

B. Variable-Length Block Codes With Feedback

Recall that feedback does not improve the missed-detec-
tion exponent for a special message. On the contrary, the
false-alarm exponent of a special message is improved when
feedback is available and variable decoding time is allowed. We
again restrict to uniform delay capacity-achieving sequences
with feedback, i.e., capacity-achieving sequences satisfying

.

Definition 13: For a uniform delay capacity-achieving se-
quence with feedback, , such that

the false-alarm exponent is defined as

Then is defined as .

Theorem 11:

Note that . Thus, feedback strictly improves the
false-alarm exponent, .

Optimal Strategy: We use a strategy similar to the one em-
ployed in proving Theorem 9 in Section IV-E. In the first phase,
a length code is used to convey whether or not, using
a special bit .

• If , a length capacity-achieving code with
is used. If the decoded message for the length code is

, an erasure is declared for long block. Else the
decoded message of length code becomes the decoded
message for the whole long block.

• If ,
— and , input symbol is transmitted for time

units.
— and , input symbol is transmitted for time

units.
If the output sequence, , is typical with

then else, an erasure is declared for long
block.

The receiver and the transmitter starts from scratch if an erasure
is declared at the end of second phase.

Note that, this strategy simultaneously achieves the optimal
missed-detection exponent and the optimal false-alarm expo-
nent for this special message.

VI. FUTURE DIRECTIONS

In this paper, we have restricted our investigation of UEP
problems to data rates that are essentially equal to the channel
capacity. The scenarios we have analyzed provide us with a rich
class of problems when we consider data rates below capacity.

Most of the UEP problems has a coding-theoretic version.
In these coding-theoretic versions deterministic guarantees, in
terms of Hamming distances, are demanded instead of the prob-
abilistic guarantees, in terms of error exponents. As we have
mentioned in Section I-A, coding-theoretic versions of bit-wise
UEP problems have been extensively studied for the case of
linear codes. But it seems that coding-theoretic versions of both
message-wise UEP problems and bit-wise UEP problem for
nonlinear codes have been scarcely investigated [3], [5].

Throughout this paper, we focused on the channel coding
component of communication. However, often times, the final
objective is to communicate a source within some distortion
constraint. The message-wise UEP problem itself has first come
up within this framework [12]. But the source we are trying to
convey can itself be heterogeneous, in the sense that some part of
its output may demand a smaller distortion than other parts. Un-
derstanding optimal methods for communicating such sources
over noisy channels present many novel joint source–channel
coding problems.

At times, the final objective of communication is achieving
some coordination between various agents [14]. In these sce-
narios, the channel is used for both communicating data and
achieving coordination. A new class of problem lends itself to
us when we try to figure out the tradeoffs between error expo-
nents of the coordination and data?

We can also actively use UEP in network protocols. For ex-
ample, a relay can forward some partial information even if
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it cannot decode everything. This partial information could be
characterized in terms of special bits as well as special mes-
sages. Another example is two-way communication, where UEP
can be used for more reliable feedback and synchronization.

Information-theoretic understanding of UEP also gives rise
to some network optimization problems. With UEP, the inter-
face to physical layer is no longer bits. Instead, it is a collec-
tion of various levels of error protection. The achievable channel
resources of reliability and rate need to be efficiently divided
among these levels, which gives rise to many resource alloca-
tion problems.

VII. BLOCK CODES WITHOUT FEEDBACK: PROOFS

In the following sections, we use the following standard no-
tation for entropy, conditional entropy, and mutual information:

where .
In addition, we denote the decoding region of a message

by , i.e.,

A. Proof of Theorem 1

Proof: We first show that any capacity-achieving se-
quence with can be used to construct another capacity-
achieving sequence, with , all members
of which are fixed composition codes. Then we show that

for any capacity-achieving sequence, which only
includes fixed composition codes.

Consider a capacity-achieving sequence with message sets
, where . As a result of

Markov inequality, at least of the messages in
satisfy

(1)

Similarly, at least of the messages in satisfy

(2)

Thus, at least of the messages in satisfy both
(1) and (2). Consequently, at least messages are of the
form and satisfy (1) and (2). If we group them according
to their empirical distribution, at least one of the groups will
have more than messages, because the number of
different empirical distributions for elements of is less than

. We keep the first codewords of this most
populous type, denote them by , and throw away all of other
codewords corresponding to the messages of the form .
We do the same for the messages of the form and
denote corresponding codewords by .

Thus, we have a length code with message set of the
form where and

. Furthermore,

Now let us consider following -long block code with mes-
sage set where .
If , then . If

then . De-
coder of this new length code uses the decoder of the original
length code first on and then on . If the concatenation
of length codewords corresponding to the decoded halves, is a
codeword for an , then . Else, an arbitrary mes-
sage is decoded. One can easily see that the error probability of
the length code is less than twice the error probability of the
length code, i.e.,

Furthermore, bit error probability of the new code is also at most
twice the bit error probability of the length code, i.e.,

Thus, using these codes one can obtain a capacity-achieving se-
quence with all members of which are fixed
composition codes.

In the following discussion, we focus on capacity-achieving
sequences, ’s which are composed of fixed composition codes
only. We will show that for all capacity-achieving

’s with fixed composition codes. Consequently, the discussion
above implies that .

We call the empirical distribution of a given output sequence,
, conditioned on the codeword , the conditional type of

given the message and denote it by . Furthermore, we
call the set of ’s whose conditional type with message is ,
the -shell of , and denote it by . Similarly, we denote
the set of output sequences with the empirical distribution

, by .
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We denote the empirical distribution of the codewords of the
th code of the sequence by and the corresponding output

distribution by , i.e.,

We simply use and whenever the value of is unam-
biguous from the context. Furthermore, stands for the
probability measure on such that

is the set of ’s for which and
.

and
for some

(3)

In other words, is the set of ’s such that
and decoded value of the first bit is zero. Note that

since for each there is a unique and for each
and message there is unique ; each

belongs to a unique or , i.e., ’s and ’s are
disjoint sets that collectively cover the set .

Let us define the typical neighborhood of as

(4)
Let us denote the union of all ’s for typical ’s by

. We will establish the following inequality later.
Let us assume for the moment that it holds.

(5)

where .

As a result of bound given in (5) and the blowing up lemma
[13, Ch. 1, Lemma 5.4], we can conclude that for any capacity-
achieving sequence , there exists a sequence of pairs
satisfying and such that

where is the set of all ’s which differs from an ele-
ment of in at most places. Clearly, one can repeat the same
argument for to get

Consequently

Note that if , then there exist at least one element
which differs from in at most

places.9 Thus, we can upper-bound its probability by

where . Thus, we have

(6)

Note that for any , there exist
a for an of the form which differs
from in at most places.10 Consequently

(7)

Since , using (7) we can lower-bound the proba-
bility of under the hypothesis as follows:

(8)

Clearly, the same holds for too, thus

(9)

Consequently, we get (10) at the bottom of the page, where
follows from (8) and (9) and follows from (6).

Using Fano’s inequality, we get

(11)

9Because of the integer constraints, might actually be an empty set. If
so, we can make a similar argument for the� which minimizes �� ����
� ����. However, this technicality is inconsequential.

10Integer constraints here are inconsequential as well.

(10)
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where is the mutual information between the mes-
sage and channel output . In addition, we can upper-
bound as follows:

(12)

where . Step follows the
nonnegativity of KL divergence and step follows from the
fact that all the codewords are of type .

Using (10), (11), and (12) we get

Thus, using , , and we
conclude that

Now the only thing left for proving is to establish in-
equality (5). One can write the error probability of the th code
of as

(13)

where

for .
Note that is the sum, over the messages for which

, of the number of the elements in that are not de-
coded to message . In a sense, it is a measure of the contribution

of the -shells of different codewords to the error probability.
We will use (13) to establish lower bounds on ’s.

Note that all elements of have the same probability
under and

(14)

where
Note that

Recall that and . Thus,

using the definition of given in (4) we get

(15)
for all where .

Note that

(16)

Recalling that ’s are disjoint and using (14), (15), and (16)
we get

where follows (13) and follows from the Chebyshev
inequality.11

B. Proof of Theorem 2

1) Achievability: :
Proof: For each block length , the special message is sent

with the length repetition sequence

11The claim in ��� is identical to the one in [13, Remark on page 34]
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where is the input letter satisfying

The remaining ordinary codewords are gener-
ated randomly and independently of each other using ca-
pacity-achieving input distribution independent and
identically distributed (i.i.d.) over time.

Let us denote the empirical distribution of a particular output
sequence by . The receiver decodes to the special mes-
sage only when the output distribution is not close to . Being
more precise, the set of output sequences close to , ,
and decoding region of the special message, , is given as
follows:

Since there are at most different empirical output
distribution for elements of we get

Thus

Now the only thing we are left with to prove is that we can
have low enough probability for the remaining messages. For
doing that we will first calculate the average error probability of
the following random code ensemble.

Entries of the codebook, other than the ones corresponding
to the special message, are generated independently using a ca-
pacity-achieving input distribution . Because of the sym-
metry average error probability is the same for all in .
Let us calculate the error probability of the message .

Assuming that the second message was transmitted,
is vanishingly small. It is because

the output distribution for the random ensemble for ordinary
codewords is i.i.d. . Chebyshev inequality guarantees that
probability of the output type being outside a ball around

, i.e., , is of the order .
Assuming that the second message was transmitted,

is vanishingly small due to the
standard random coding argument for achieving capacity [35].

Thus, for any for all large enough , the average
error probability of the code ensemble is smaller than thus,
we have at least one code with that . For that code, at least
half of the codewords have an error probability less then .

2) Converse: : In the Section VIII-D.2, we will
prove that even with feedback and variable decoding time, the
missed-detection exponent of a single special message is at most

. Thus, .

C. Proof of Theorem 3

1) Achievability: :
Proof:
Special Codewords: At any given block length , we start

with an optimum codebook (say ) for messages.

Such optimum codebook achieves error exponent for
every message in it.

Since there are at most different types, there is at least
one type which has or more codewords. Let us
throw away all other codewords from and let us call the
remaining fixed-composition codebook as . Codebook

is used for transmitting the special messages.
As shown in Fig. 3(a), let the noise ball around the codeword

for the special message be . These balls need not be disjoint.
Let denote the union of these balls of all special messages.

If the output sequence , the first stage of the decoder
decides a special message was transmitted. The second stage
then chooses the ML candidate among the messages in .

Let us define precisely now.

where

Recall that the sphere-packing exponent for input type at
rate , , is given by

Ordinary Codewords: The ordinary codewords are gener-
ated randomly using a capacity-achieving input distribution .
This is the same as Shannon’s construction for achieving ca-
pacity. The random coding construction provides a simple way
to show that in the cavity (complement of ), we can es-
sentially fit enough typical noise-balls to achieve capacity. This
avoids the complicated task of carefully choosing the ordinary
codewords and their decoding regions in the cavity, .

If the output sequence , the first stage of the decoder
decides an ordinary message was transmitted. The second stage
then chooses the ML candidate from ordinary codewords.

Error Analysis: First, consider the case when a special code-
word is transmitted. By Stein’s lemma and definition of

, the probability of has exponent .
Hence, the first-stage error exponent is at least .

Assuming correct first-stage decoding, the second-stage error
exponent for special messages equals . Hence, the effective
error exponent for special messages is

Since is at most the sphere-packing exponent ,
[19], choosing arbitrarily small ensures that missed-detection
exponent of each special message equals .

Now consider the situation of a uniformly chosen ordinary
codeword being transmitted. We have to make sure that the error



BORADE et al.: UNEQUAL ERROR PROTECTION 5527

probability is vanishingly small now. In this case, the output se-
quence distribution is i.i.d. for the random coding ensemble.
The first-stage decoding error happens when . Again,
by Stein’s lemma, this exponent for any particular equals

where in in is given by

follows from the nonnegativity of the KL divergence, and
follows from the definition of sphere-packing exponent and

.
Applying union bound over the special messages, the prob-

ability of first-stage decoding error after sending an ordinary
message is at most . We have already shown
that , which ensures that probability of a first-stage
decoding error for ordinary messages is at most for the
random coding ensemble. Recall that for the random coding en-
semble, the average error probability of the second-stage de-
coding also vanishes below capacity. To summarize, we have
shown these two properties of the random coding ensemble.

1) Error probability of first-stage decoding vanishes as
with when a uniformly chosen ordinary mes-

sage is transmitted.
2) Error probability of second-stage decoding (say ) van-

ishes with when a uniformly chosen ordinary message is
transmitted.

Since the first error probability is at most for some
fraction of codes in the random ensemble, and the second error
probability is at most for some fraction, there exists a
particular code which satisfies both these properties. The overall
error probability for ordinary messages is at most ,
which vanishes with . We will use this particular code for the
ordinary codewords. This de-randomization completes our con-
struction of a reliable code for ordinary messages to be com-
bined with the code for special messages.

2) Converse: : The converse argument for this
result is obvious. Removing the ordinary messages from the
code can only improve the error probability of the special mes-
sages. Even then (by definition) the best missed detection expo-
nent for the special messages equals .

D. Proof of Theorem 4

Let us now address the case with erasures. In this achiev-
ability result, the first stage of decoding remains unchanged
from the no-erasure case.

Proof: We use essentially the same strategy as before. Let
us start with a good code for messages allowing erasure

decoding. Forney had shown in [18] that, for symmetric chan-
nels, an error exponent equal to is achiev-
able while ensuring that erasure probability vanishes with .
We can use that code for these codewords. As before, for

, the first stage decides a special codeword was sent.
Then the second stage applies the erasure decoding method in
[18] amongst the special codewords.

With this decoding rule, when a special message is trans-
mitted, error probability of the two-stage decoding is bottle-
necked by the first stage: its error exponent is smaller
than that of the second stage ( ). By choosing arbi-
trarily small , the special messages can achieve as their
missed-detection exponent.

The ordinary codewords are again generated i.i.d. . If the
first stage decides in favor of the ordinary messages, ML de-
coding is implemented among ordinary codewords. If an ordi-
nary message was transmitted, we can ensure a vanishing error
probability as before by repeating earlier arguments for no-era-
sure case.

VIII. VARIABLE LENGTH BLOCK CODES WITH FEEDBACK:
PROOFS

In this section, we will present a more detailed discussion of
bit-wise and message-wise UEP for variable-length block codes
with feedback by proving Theorems 5–9. In the proofs of con-
verse results, we need to discuss issues related to the conditional
entropy of the messages given the observation of the receiver. In
those discussions, we use the following notation for conditional
entropy and conditional mutual information:

It is worth noting that this notation is different from the one
widely used, which includes a further expectation over the con-
ditioned variable. “ ” in the conventional notation,
stands for the and “ ” stands for

.

A. Proof of Theorem 5

1) Achievability: : This single special bit exponent
is achieved using the missed detection exponent of a single spe-
cial message, indicating a decoding error for the special bit. The
decoding error for the bit goes unnoticed when this special mes-
sage is not detected. This shows how feedback connects bit-wise
UEP to message-wise UEP in a fundamental manner.

Proof: We will prove that by constructing a ca-
pacity-achieving sequence with feedback , such that

. For that, let be a capacity-achieving sequence such that
. Note that existence of such a is guaranteed as a

result of Theorem 2. We first construct a two-phase fixed-length
block code with feedback and erasures. Then using this we ob-
tain the th element of .

In the first phase, one of the two input symbols, and ,
with distinct output distributions12 is send for time units

12Two input symbols � and � are such that� ���� � ��� ���� �
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depending on . At time receiver makes tentative deci-
sion on message . Using Chernoff bound it can easily be
shown that, [36, Theorem 5]

where

Actual value of , however, is immaterial to us; we are merely
interested in finding an upper bound on which
goes to zero as increases.

In the second phase, the transmitter uses the th member of
. The message in the second phase, , is determined by

depending on whether is decoded correctly or not at the end
of the first phase.

At the end of the second phase, the decoder decodes using
the decoder of . If the decoded message is one, i.e., ,
then the receiver declares an erasure, else, and

.
Note that erasure probability of the two-phase fixed-length

block code is upper-bounded as

(17)

where is the error probability of the th member of .
Similarly, we can upper-bound the probabilities of two error

events associated with the two-phase fixed-length block code as
follows:

(18)

(19)

where is the conditional error probability of the first
message in the th element of .

If there is an erasure, the transmitter and the receiver will
repeat what they have done again, until they get . If
we sum the probabilities of all the error events, including error
events in the possible repetitions we get

(20)

(21)

Note that the expected decoding time of the code is

(22)

Using (17), (18), (19), (20), (21), and (22) one can conclude
that the resulting sequence of variable-length block codes with
feedback, , is reliable. Furthermore, and .

2) Converse: : We will use a converse result we
have not proved yet, namely, the converse part of Theorem 8,
i.e., .

Proof: Consider a capacity-achieving sequence, , with
message set sequence . Using , we
construct another capacity-achieving sequence with a special
message , with message set sequence
such that . This implies , which,

together with Theorem 8, , gives us .
Let us denote the message of by and that of by .

The th code of is as follows. At time , the receiver chooses
randomly an for the th element of and sends its choice
through a feedback channel to the transmitter. If the message of

is not , i.e., , then the transmitter uses the codeword
for to convey . If , the receiver picks
an with uniform distribution on and uses the codeword
for to convey that .

The receiver makes decoding using the decoder of : if
then , if then . One

can easily show that the expected decoding time and error proba-
bility of both of the codes are same. Furthermore, the error prob-
ability of in is equal to the conditional error probability
of message in thus, .

B. Proof of Theorem 6

1) Achievability: :
Proof: We will construct the capacity-achieving sequence

with feedback using a capacity-achieving sequence satis-
fying , as we did in the proof of Theorem 5. We
know that such a sequence exists, because of Theorem 8.

For the th member of , consider the following two-phase
errors and erasures code. In the first phase, the transmitter uses
the th element of to convey . The receiver makes a
tentative decision . In the second phase, the transmitter uses
the th element of to convey and whether

or not, with a mapping similar to the one we had
in the proof of Theorem 5.

and

Thus, and
. If we apply a decoding algorithm, like the one

we had in the proof of Theorem 5 ; going through essentially the
same analysis with proof of Theorem 5, we can conclude that

is a capacity-achieving sequence and
and .

2) Converse: : In establishing the
converse we will use a technique that was used previously in
[4], together with Lemma 1 which we will prove in the con-
verse part Theorem 8.

Proof: Consider any variable-length block code with feed-
back whose message set is of the form .
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Let be the first time instance that an becomes more
likely than and let .

Recall that , as a result, the definition
of implies that . Thus,
using Markov inequality for we get

(23)

We use (23) to bound the expected value of the entropy of the
first part of the message at time as follows:

It has already been established in [4] that

(24)

Thus

(25)

The bound given in inequality (25) specifies the time needed
for getting a likely candidate, . As in the case in [4], the
remaining time is the time spent waiting for confirmation. But
unlike in [4], the transmitter needs to convey also during
that time.

For each realization of , divide the message set into dis-
joint subsets as follows:

where is the most likely message given . Further-
more, let the auxiliary message, , be the index of the set that

belongs to, i.e., .
The decoder for the auxiliary message decodes the index of

the decoded message at the decoding time , i.e.,

With these definition we have

Now, we apply Lemma 1, which will be proved in Sec-
tion VIII-D.2. To ease the notation we use following shorthand
notation:

As a result of Lemma 1, for each realization of such
that , we have the expression at the bottom of the page.
By multiplying both sides of the inequality with , we get
an expression that holds for all

(26)

Now we take the expectation of both sides over . For the
right-hand side, we get the identity in (27) given at the top of
the following page, where follows the concavity of

and Jensen’s inequality when we interpret
as probability distribution over and follows the fact that

is a decreasing function.
Now we lower-bound in terms of

. Note that

Furthermore, for all such that

Thus
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(27)

(28)

where follows from the inequality (23), follows from
the inequality (24). Since is decreasing in its argument,
inserting (28) in (27) we get

RHS

(29)

Note that

where follows the concavity of . Thus, the upper bound
given in (29) is decreasing in . Hence, using the lower
bound on , given in (23), we get (30) at the bottom of the
page. Now we consider the left-hand side (LHS) and take the
expectation of the inequality given in (26) to get (31) also shown
at the bottom of the page, where follows log-sum inequality
and follows from the fact that .

Note that

(32)

where in last step we have used (23). Furthermore, we get (33)
at the top of the following page. Thus, using (31), (32), and (33)
we get

(34)

Using the inequalities (30), (34) and choosing we get
. Since , this implies

.

C. Proof of Theorem 7

1) Achievability:
Proof: The proof is very similar to the achievability proof

for Theorem 6. Choose a capacity-achieving sequence such
that . The capacity-achieving sequence with feed-
back uses elements of as follows.

For the th element of code , the transmitter uses the
th element of to send the first part of the message, .

RHS (30)

LHS

(31)
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(33)

In the remaining phases, , the transmitter uses th
element of . The special message of the code for phase is
allocated to the error event in previous phases.

Thus, and for all
. If for all , , the receiver

decodes all parts of the information, else, it declares an erasure.
We skip the error analysis because it is essentially the same as
that for Theorem 6.

2) Converse:
Proof: We prove the converse of Theorem 7 by contradic-

tion. Evidently, for all

Thus, if there exists a scheme that can reach an error exponent
vector outside the region given in Theorem 7, there is at least

one such that . Then we can have two
super messages as follows:

and

Recall that . Thus, this new code
is a capacity-achieving code, whose special bits have rate
and . This contradicts Theorem 6 which
we have already proved. Thus, all the achievable error exponent
regions should lie in the region given in Theorem 7.

D. Proof of Theorem 8

1) Achievability: : Note that any fixed-length block
code without feedback is also a variable-length block code with
feedback, thus, . Using the capacity-achieving se-
quence, we have used in the achievability proof of Theorem 2,
we get .

2) Converse: : Now we prove that even with feed-
back and variable decoding time, the best missed detection ex-
ponent of a single special message is less then or equal to ,

i.e., . Since the set of capacity-achieving sequences
is a subset of capacity-achieving sequences with feedback and
variable decoding time, this also implies that .

Instead of directly proving the converse part of Theorem 8 we
first prove Lemma 1 as follows.

Lemma 1: For any variable-length block code with feedback,
a message set , initial entropy , and average error prob-
ability , the conditional error probability of each message is
lower-bounded as follows:

(35)

where is given by the following optimization over proba-
bility distributions on given in (36) at the bottom of the page.
It is worthwhile remembering the notation we introduced previ-
ously that

The first thing to note about Lemma 1 is that it is not nec-
essarily for the case of uniform probability distribution on the
message set . Furthermore, as long as , the

lower bound on depends on the a priori
probability distribution of the messages only through the en-
tropy of it, .

In (36), is simply a time-sharing variable, which allows us
to use an pair with low mutual information and high
divergence together with another pair with high mutual
information and low divergence. As a result of Carathéodory’s
theorem, we see that time sharing between two points of the
form is sufficient for obtaining optimal performance,
i.e., allowing time sharing between more than two points of the
form will not improve the value of .

Indeed, for any , one can use the optimizing values
of , , , , and in a scheme like the one in The-

(36)
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orem 2 with time sharing and prove that the missed detection
exponent of is achievable for a reliable sequence of rate

. In that determines how long the input letter is
used for the special message while is being used for the or-
dinary codewords. Furthermore, arguments very similar to those
of Theorem 8 can be used to prove no missed detection expo-
nent higher than is achievable for reliable sequences of
rate . Thus, is the best exponent a message can get in a
rate reliable sequence.

One can show that is a concave function of over its
support . Furthermore, and .
Thus, is a concave strictly decreasing function of for

.

Proof (of Lemma 1): Recall that is the decoding region
for , i.e., . Then as a result of
data processing inequality for KL divergence we have

(37)

where in the last step we have used, the fact that
. In addition

(38)

Thus, using (37) and (38) we get

(39)
Now we lower-bound the error probability of the special mes-
sage by upper-bounding . For that let us con-
sider the following stochastic sequence:

Note that and since we
have . Thus, is a martingale,
furthermore, since we can use [37, Theorem 2, p.
487], to get

Thus

(40)

Note that

As a result of the definition of given in (36), we have

(41)
where is given by13

Given random variables forms a Markov
chain. Thus

(42)

Since is a decreasing function, (40), (41), and (42) lead to

(43)
Note that

(44)

where in both and we use the concavity of the func-
tion together with Jensen’s inequality. Thus, using (39), (43),

13Note that unlike the conventional definition of conditional mutual informa-
tion, � �� �� �� � is not averaged over the conditioned random variable
� .
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and (44) we get

Since is decreasing in , the only thing we are left to
show is that

(45)
For that, consider the stochastic sequence

Clearly, and , thus
is a martingale. Furthermore, and

thus, using a version of Doob’s optional stopping
theorem, [37, Theorem 2, p. 487], we get

(46)

One can write Fano’s inequality as follows:

Consequently

Using the concavity of binary entropy

(47)

Using (46) together with (47) we get the desired condition given
in (45).

The preceding proof is for encoding schemes which do not
have any randomization (time sharing), but same ideas can be
used to establish the exact same result for general variable-
length block codes with randomization. Now we are ready to
prove the converse part of the Theorem 8.

Proof (of Converse Part of Theorem 8): In order to prove
, first note that for capacity-achieving sequences we

consider . Thus

Thus, for any capacity-achieving sequence with feedback

(48)

E. Proof of Theorem 9

In this subsection, we will show how the strategy for sending
a special bit can be combined with the Yamamoto–Itoh strategy
when many special messages demand a missed-detection expo-
nent. However, unlike previous results about capacity-achieving
sequences, Theorems 5–8, we will have an additional uniform
delay assumption.

We will restrict ourself to uniform delay capacity-achieving
sequences.14 Clearly, capacity-achieving sequences in general
need not to be uniformly delayed. Indeed, many messages,

, can get an expected delay, much larger than
the average delay . This in turn can decrease the error prob-
ability of these messages. The potential drawback of such codes,
is that their average delay is sensitive to assumption of messages
being chosen according to a uniform probability distribution.
Expected decoding time, , can increase a lot if the code
is used in a system in which the messages are not chosen uni-
formly.

It is worth emphasizing that all previously discussed expo-
nents (single-message exponent , single-bit exponent ,
many-bits exponent , and achievable multilayer exponent
regions) remain unchanged whether or not this uniform delay
constraint is imposed. Thus, the flexibility to provide different
expected delays to different messages does not improve those
exponents.

However, this is not true for the message-wise UEP with ex-
ponentially many messages. Removing the uniform delay con-
straint can considerably enhance the protection of special mes-
sages at rates higher than . Indeed, one can make the
exponent of all special messages . The flexibility of providing
more resources (decoding delay) to special messages achieves
this enhancement. However, we will not discuss those cases in
this paper and stick to uniform delay codes.

1) Achievability: : The
optimal scheme here reverses the trick for achieving : first,
a special bit tells the receiver whether the message being trans-
mitted is special one or not. After the decoding of this bit, the
message itself is transmitted. This further emphasizes how feed-
back connects bit-wise and message-wise UEP, when used with
variable decoding time.

Proof: Like all the previous achievability results, we con-
struct a capacity-achieving sequence , with the desired asymp-
totic behavior. A sequence of multiphase fixed-length errors and
erasures codes, , is used as the building block of . Let us
consider the th member of . In the first phase, the transmitter

14Recall that for any reliable variable-length block code with feedback � is
defined as

� �
���� �� �� � ��

� �� �

and uniform delay reliable sequences are the ones that satisfy �	� � � 
.
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sends one of the two input symbols with distinct output distri-
butions for time units in order to tell whether
or not. Let be . Then, as mentioned in Sec-

tion VIII-A.1, with a threshold decoding we can achieve

(49)

where . However, the actual value of is not important
here, we are merely interested in an upper bound vanishing with
increasing .

In the second phase, one of two length codes is used de-
pending on .

• If , in the second phase, the transmitter uses the th
member of a capacity-achieving sequence, such that

. We know that such a sequence exists because
of Theorem 2. The message of the is determined
using the following mapping:

At the end of the second phase, the receiver decodes .
If , then the receivers declares an erasure,
erasure. If , then .

• If , the transmitter uses a two-phase code with errors
and erasures in the second phase, like the one described by
Yamamoto and Itoh in [40]. The two phases of this code are
called communication and control phases, respectively.
In the communication phase, the transmitter uses the

th member of a capacity-achieving sequence with
, to convey its message . The auxiliary

message is determined as follows:

The decoded message of the th member of is
called the tentative decision of communication phase and
denoted by .
In the control phase,
— if , the tentative decision is confirmed by

sending the accept symbol for
time units.

— if , the tentative decision is rejected by sending
the reject symbol for time units

where and are the maximizers in the following opti-
mization problem:

If the output sequence in the last time steps
is typical with then ; else, an
erasure is declared for . Note that the total proba-
bility of typical sequences are less than

when and more than

when where , [13, Corrol-
lary 1.2, p. 19].
If erasure or if , then the receiver declares an
erasure for , erasure. If ,
then .

Now we can calculate the error and erasure probabilities of the
two-phase fixed-length block code. Let us denote the erasures
by erasure for each .

For using (49) and Bayes rule we get

erasure

(50)

erasure

(51)

For using (49) and the Bayes rule we get

erasure (52)

erasure (53)

Whenever erasure, than the transmitter and the receiver
try to send the message once again from scratch using the same
strategy. Then, for any

erasure

erasure

(54)

erasure
(55)

Using (50), (51), (52), (53), (54), and (55) we conclude that
is a capacity-achieving sequence such that

erasure

2) Converse: :
Proof: Consider any uniform delay capacity-achieving se-

quence . Note that by excluding all we get a reliable
sequence such that

Thus
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(57)

Consequently, . Similarly, by excluding
all but one of the elements of , we can prove that

, using Theorem 8 and uniform delay condition.

IX. AVOIDING FALSE ALARMS: PROOFS

A. Block Codes Without Feedback: Proof of Theorem 10

1) Lower Bound: :
Proof: As a result of the coding theorem [13, Ch. 2, Corol-

lary 1.3, p. 102 ] we know that there exits a reliable sequence
of fixed composition codes whose rate is and whose th

elements composition satisfies

We use the codewords of the th element of as the code-
words of the ordinary messages in the th code in . For the
special message we use a length- repetition sequence

.
The decoding region for the special message is essentially the

bare minimum. We include typical channel outputs within the
decoding region of the special message to ensure small missed
detection probability for the special message, but we exclude all
other output sequence .

Note that this definition of itself ensures that special mes-
sage is transmitted reliably whenever it is sent,

The decoding region of the ordinary messages,
, is the intersection of the corresponding

decoding region in with the complement of . Thus, the
fact that is a reliable sequence implies that

Consequently, we have reliable communication for ordi-
nary messages as long as ,

. But we prove a much stronger result to ensure that
is decaying fast enough. Before doing

that let us note that in the second stage of the decoding, when we
are choosing a message among the ordinary ones, ML decoder

can be used instead of the decoding rule of the original code.
Doing that will only decrease the average error probability.

Note the probability of a -shell of a message is equal to

Note that also that can be written as the union of -shells
of a message as follows:

where

Note that since there are at most different condi-
tional types

Thus, for all

2) Upper Bound: :
Proof: As a result of data processing inequality for KL

divergence we have

(56)

Using the convexity of the KL divergence we get (57) at the top
of the page, where denotes the input letter for codeword
of message , at time .

Let us denote the empirical distribution of the for time
, by .
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Using (56) and (57) we get

(58)

We show below that for all capacity-achieving codes, almost all
of the ’s have a which is essentially equal to . To do
that, let us first define the set and

Note that . As a result of Fano’s inequality, we
have

(59)

On the other hand, using standard manipulations on mutual in-
formation we get

(60)

Using (60) in (59) we get

Let be

then and

(61)

Note for any , we have

(62)

where

Using (61) and (62)

Inserting this in (58) we get

B. Variable-Length Block Codes With Feedback:
Proof of Theorem 11

1) Achievability: :
Proof: We construct a capacity-achieving sequence with

feedback by using a construction like the one we have for
. In fact, this scheme achieves the false-alarm exponent

simultaneously with the best missed detection exponent for
the special message.

We use a fixed-length multiphase errors and erasure code as
the building block for the th member of . In the first phase,

is conveyed using a length repetition code,
like we did in Sections VIII-A.1 and VIII-E.1. Recall that

(63)

In the second phase, one of the two length- codes is used de-
pending on .

• If , the transmitter uses the th member of a capacity-
achieving sequence, , such that to convey
the message. We know that such a sequence exists because
of Theorem 2. Let the message of be the message of ,
i.e., the auxiliary message

If at the end of the second phase , the receiver
declares an erasure, erasure, else, is decoded

.
• If , the transmitter uses a length- repetition code to

convey whether or not.
— If , and the transmitter sends the code-

word ;
— If , and the transmitter sends the code-

word ;
where and are the maximizers achieving

The receiver decodes only when the output se-
quence is typical with . Evidently as before we
have, [13, Corollary 1.2, p. 19]

(64)

(65)

where .

If then , else the receiver declares an erasure
for the whole block, i.e., erasure.

Now we can calculate the error and erasure probabilities for
long block code. Using (63), (64), (65), and the Bayes’

rule we get

erasure (66)
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erasure (67)

(68)

(69)

(70)

Whenever erasure than the transmitter tries to send the
message again from scratch, using the same strategy. Conse-
quently, all of the above error probabilities are scaled by a factor
of when we consider the corresponding

error probabilities for the variable decoding time code. Further-
more

erasure
(71)

Using (66), (67), (68), (69), (70), and (71) we conclude that
is a capacity-achieving code with and

.

2) Converse: :
Proof: Note that as a result of convexity of KL divergence

we have

(72)

It has already been proven in [4] that

(73)
Note that as a result of the definition of , we have

. Using this together with (72) and (73)
the we get

Thus. for any uniform delay reliable sequence , we have
.

APPENDIX

A. Equivalent Definitions of UEP Exponents

We could have defined all the UEP exponents in this paper
without using the notion of capacity-achieving sequences. As
an example, in this appendix we define the single-bit exponent
in this alternate manner and show that both definitions lead to
identical results. In this alternative, first is defined as the
best exponent for the special bit at a given data rate and then
it is minimized over all to obtain .

Definition 14: For any , is the set of sequence
of codes , with message sets such that

and

where .

Definition 15: For a sequence of codes, , such that
, a single-bit exponent

equals

(74)

Definition 16: and the single-bit exponents are
defined as

Note that according to this definition, the special bit can
achieve the exponent , no matter how close the rate is to
capacity. We now show why this definition is equivalent to
the earlier definition in terms of capacity-achieving sequences
given in Section III.

Lemma 2:
Proof: :

By definition of , for any given , there exists a ca-
pacity-achieving sequence such that and for large
enough , . If we replace first members of
with codes whose rates are or higher we get another se-
quence such that where . Thus,

for all . Consequently

:
Let us first fix an arbitrarily small . In the table in Fig. 6,

row represents a code-sequence , whose
single-bit exponent

Let represent length- code in this sequence. We construct
a capacity-achieving sequence from this table by sequentially
choosing elements of from rows as follows.

• For each sequence , let denote the smallest block
length at which
1) the single bit error probability satisfies

2) the overall error probability satisfies

3) .
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Fig. 6. Row � denotes a reliable code sequence at rate � � ���. Bold path
shows capacity-achieving sequence �.

• Given the sequence , we choose the members of
our capacity-achieving code from the code table shown in
Fig. 6 as follows.
— Initialize: We use first members of as the first

members of the new code.
— Iterate: We choose codes of length to from

the code sequence , i.e.,

Thus, is a sampling of the code table as shown by the bold
path in Fig. 6. Note that this choice of is a capacity-achieving
sequence; moreover, it will also achieve a single-bit exponent

Choosing arbitrarily small proves .
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